Course Name : AP Biology									
Course Overview									
<u>Unit 1</u>	<u>Unit 2</u>	<u>Unit 3</u>	<u>Unit 4</u>	<u>Unit 5</u>	<u>Unit 6</u>	<u>Unit 7</u>	<u>Unit 8</u>		
Course Materials/Resources/Technology									
"Principles of Life", 3rd ed. Boundless digital textbook Chromebook/Canvas website									

UNIT 1: Chemistry of Life

Duration of Unit: 3 Weeks (15 days)

Description of Unit: We will compare and contrast the four basic classes of biological macromolecules, considering their structure and function, and end with a more focused look at DNA and RNA.

Essential Questions and/or Enduring Understandings:

How do atoms bond together to form compounds?

What unique properties of water help it to support life on Earth?

What are the four major biological compounds and how do they differ in structure?

Describe how a protein's structure affects its function (use enzymes as an example).

What is "denaturation"?

Use a model to show an enzyme functioning properly, then one that is inhibited.

What factors increase or decrease an enzyme's effectiveness?

Academic Vocabulary:
Electron
Bond
Atom
Molecule
Compound
Dehydration synthesis
Monomer
Polymer
Polar
Non-polar
Hydrophilic
Hydrophobic
Carbohydrate
Lipid
Protein
Nucleic acid
Amino acid
Nucleotide
Phosphate
Deoxyribose/ribose
Nitrogenous base
Enzyme
Substrate
Product(s)
Active site
Allosteric site
Inhibitor

Co-factor/coenzyme Denaturation		
Materials/Resources/Tech Biological Enzymes Data collection equipment Boundless online textboo	t (student-inquiry lab)	
ESSENTIAL Standards	Learning Targets	
 1.A: Describe biological concepts and/or processes. 	Demonstrate proficiency through completion of the following assignments: Biological Molecules - Multiple Features Map Test One	
1.B: Explain biological concepts and/or processes.	Biological Molecules modeling Test One	
2.A: Describe characteristics of a biological concept, process, or model represented visually.	Transcription and Translation Diagrams Test One	
3.B: State the null and alternative hypotheses,	Activity of Catalase - Enzyme Lab Test One	

Other AP Biology " <u>Skills</u> and Standards"	Proficiency as demonstrated with the relevant assignment(s)
NICE TO KNOW Standards	Learning Targets
6.D: Explain the relationship between experimental results and larger biological concepts, processes, or theories.	Activity of Catalase - Enzyme Lab Test One
5.A: Perform mathematical calculations.	Activity of Catalase - Enzyme Lab Test One
4.B: Describe data from a table or graph.	Activity of Catalase - Enzyme Lab Test One
4.A: Construct a graph, plot, or chart.	Activity of Catalase - Enzyme Lab Test One
or predict the results of an experiment.	

Common Formative and Summative Assessments

• N/A - currently only one section/one teacher

UNIT 2: Cell Structure and Function

Duration of Unit: 5 weeks

Description of Unit: We will review the functions of the smaller components that make up cells, explore different models of understanding those functions, and perform research about how cell size affects normal and abnormal cellular function. Finally, we will discuss the major competing scientific theories about the origin of cellular life.

Essential Questions and/or Enduring Understandings:

What molecules make up the cell membrane?

How does the cell membrane selectively allow materials in and out of the cell?

How do the various cell organelles work together to perform cellular functions? Give examples.

Calculate surface area:volume ratio.

What is "efficiency", and what makes a cell more efficient? (size/shape)

Calculate water potential and predict direction of osmosis.

How do cells differ between domains? How are they alike?

How do animal and plant cells differ? How are they alike?

What are the two main scientific theories of the formation of life on Earth?

Academic Vocabulary:

Biological membrane Phospholipid bilayer Semipermeable Organelle Mitochondria Ribosome Nucleus Nucleolus Endoplasmic reticulum Golgi apparatus Vesicle Cytoskeleton Vacuole Lysosome Diffusion Osmosis Passive transport Active transport Water potential Pressure potential Solute potential Ionization constant Prokaryote Eukaryote

Materials/Resources/Technology:

Microscopes Data collection equipment (student-inquiry lab) Boundless online textbook

ESSENTIAL Standards	Learning Targets
1.A: Describe biological concepts and/or processes.	Demonstrate proficiency through completion of the following assignments: Organelle Structure and Function - Literacy Tools Passive Transport - Comprehension Models Quiz - Cellular Structure and Function
1.B: Explain biological concepts and/or processes.	Test Two Organelle Structure and Function - Literacy Tools Passive Transport - Comprehension Models Quiz - Cellular Structure and Function Test Two
2.B Explain relationships between different characteristics of biological concepts, processes, or models represented visually	Passive Transport - Comprehension Models Test Two
2.D Represent relationships within biological models,	Passive Transport - Comprehension Models Water Potential - Inquiry Lab Test Two

including mathematical models.	
3.A Identify or pose a testable question based on an observation, data, or a model.	Water Potential - Inquiry Lab Test Two
3.E Propose a new/next investigation based on a. An evaluation of the evidence from an experiment. b. An evaluation of the design/methods.	Water Potential - Inquiry Lab Test Two
5.B Use confidence intervals and/ or error bars to determine whether sample means are statistically different.	Quiz - Cellular Structure and Function Water Potential - Inquiry Lab Test Two
5.D Use data to evaluate a hypothesis (rejecting	Water Potential - Inquiry Lab Test Two

	
or failing to reject the null hypothesis).	
6.A Make a scientific	Water Potential - Inquiry Lab
claim.	Test Two
NICE TO KNOW Standards	Learning Targets
Other AP Biology " <u>Skills</u> and Standards"	Proficiency as demonstrated with the relevant assignment(s)
	Common Formative and Summative Assessments
 N/A - currently onl 	

Unit 3: Energy

Duration of Unit: 4 weeks

Description of Unit: We will cover the basics of metabolism and cellular energetics in order to show similarities and differences in the pathways and the uses for energy that various organisms have.

Essential Questions and/or Enduring Understandings:

How do the Laws of Thermodynamics relate to living systems?

How does ATP demonstrate relationships among living things?

Write a verbal description of the photosynthesis equation.

Write a verbal description of the cellular respiration equation.

Compare fermentation and chemosynthesis to <u>both</u> photosynthesis and cellular respiration.

How (from where) do different organisms obtain their energy?

What cellular reactions *use* energy?

What cellular reactions *release* energy?

Give several specific examples of using energy to maintain homeostasis within a cell and/or organism.

Academic Vocabulary:

Thermodynamics
Energy
Potential energy
Kinetic energy
Endergonic reactions
Exergonic reactions
Coupled reactions
ATP
Entropy
Enthalpy
Gibbs free energy
Metabolism
Catabolic reactions
Anabolic reactions
Cellular respiration
Photosynthesis

Fermentation	
Chemosynthesis	
Homeostasis	
Thermoregulation	
Ectotherm	
Endotherm	
Materials/Resources/Tech	nology:
Data collection equipmen Boundless online textboo	
ESSENTIAL Standards	Learning Targets
1.A: Describe biological	Demonstrate proficiency through completion of the following assignments:
concepts and/or	
processes.	Boundless Ch. 8 - Reading Guide
	Quiz - Energy
	Test Three
1.B: Explain biological	Boundless Ch. 8 - Reading Guide
concepts and/or	Quiz - Energy
processes.	Test Three
2.B Explain relationships	
between different	Free Energy - graphing exercises
characteristics of	Quiz - Energy
biological concepts,	
	Test Three

processes, or models represented visually	
3.C Identify experimental procedures that are aligned to the question, including a. Identifying dependent and independent variables. b. Identifying appropriate controls. c. Justifying appropriate controls.	Photosynthesis/Cellular Respiration Lab Test Three
3.E Propose a new/next investigation based on a. An evaluation of the evidence from an experiment. b. An evaluation of the design/methods.	Photosynthesis/Cellular Respiration Lab Test Three
5.D Use data to evaluate a hypothesis (rejecting	Photosynthesis/Cellular Respiration Lab

or failing to reject the null hypothesis).	Test Three	
6.A Make a scientific claim.	Photosynthesis/Cellular Respiration Lab Test Three	
6.B Support a claim with evidence from biological principles, concepts, processes, and/or data.	Photosynthesis/Cellular Respiration Lab Test Three	
NICE TO KNOW Standards	Learning Targets	
Other AP Biology " <u>Skills</u> and Standards"	Proficiency as demonstrated with the relevant assignment(s)	
	Common Formative and Summative Assessments	
 N/A - currently only one section/one teacher 		

Unit 4: Cell Communication and Cell Cycle

Duration of Unit: 6 weeks

Description of Unit: The cellular signaling process allows cells to communicate in many different ways, over both short and long distances. This communication is subsequently controlled by various negative and positive feedback mechanisms. We will look at several examples in detail, and also connect these concepts to the cell cycle - the series of events that cells will go through when growing and dividing. The application of these concepts to real-life diseases such as cancer is also explored through research.

Essential Questions and/or Enduring Understandings:

Compare the three major types of indirect cellular signaling.

Describe a generalized cell signaling response.

What is the purpose of mitosis in cells?

What is the purpose of meiosis?

How are the processes of mitosis and meiosis similar and different?

What errors can occur during mitosis? What effects would these errors have on an organism?

What errors can occur during meiosis? What effects would these errors have on an organism?

How does the cell cycle progress?

Where are the "checkpoints" of the cell cycle and how are they controlled?

Academic Vocabulary:

Signal

Transduction

Response

Autocrine signaling

Paracrine signaling Endocrine signaling Direct signaling ("juxtacrine") Ligand Receptor molecule Mitosis Meiosis Interphase DNA replication Sister chromatids Homologous chromosome pairs Spindle fibers Centriole Centrosome Centromere Kinetochore Diploid Haploid Crossing over Independent assortment G_0 S phase G_1 M phase Cyclin Cyclin-dependent kinase (CDK) Apoptosis

Negative feedback				
Positive feedback				
Materials/Resources/Tech	Materials/Resources/Technology:			
Microscopes Data collection equipmen Boundless online textboo				
ESSENTIAL Standards	Learning Targets			
1.A: Describe biological	Demonstrate proficiency through completion of the following assignments:			
concepts and/or	Signal Transduction Analogy video			
processes.	Test Four			
1.C: Explain biological concepts, processes,	Signal Transduction Analogy video			
and/or models in	Cell Signaling Case Study			
applied contexts.	Cancer Gene website			
	Test Four			
3.A: Identify or pose a testable question based	Meiosis - Evolution from Mitosis reading assignment			
on an observation, data, or a model.	Test Four			

4.B: Describe data from a table or graph	Cancer Gene website Test Four
5.B: Use confidence intervals and/or error bars to determine whether sample means are statistically different.	Chi-squared problems - mitosis Test Four
5.C: Perform chi-square hypothesis testing.	Chi-squared problems - mitosis Test Four
NICE TO KNOW Standards	Learning Targets
Other AP Biology " <u>Skills</u> <u>and Standards</u> "	Proficiency as demonstrated with the relevant assignment(s)
	Common Formative and Summative Assessments
 N/A - currently onl 	y one section/one teacher

Unit 5: Heredity

Duration of Unit: 4 weeks

Description of Unit: By observing cells under the microscope, crossbreeding various model organisms, and utilizing cutting-edge visualization techniques, scientists were able to determine the structure and function of DNA. They identified chromosomes as the location of genes, and discovered that these genes could be manipulated to control the physical appearance of the organism.

We will learn more about how genetic variation is produced, how traits are passed through generations, and how the environment can both affect our physical characteristics AND change our DNA directly, through observation, digital simulations, and modeling.

Essential Questions and/or Enduring Understandings:

What are the ways that meiosis and sexual reproduction create genetic diversity?

Describe the basic rules of heredity.

How do Mendel's Laws allow us to predict genetic outcomes? (AKA do your Punnett squares!)

How can chi-squared be used to determine genetic linkage?

How is genetic distance calculated?

What is genetic distance used for?

How can the environment affect an organism's phenotype?

Academic Vocabulary:

Chromosome

Gene

Allele

Locus	
Dominance	
Allele	
Incomplete dominance	
Co-dominance	
X-linkage	
Autosomes	
Pedigree	
Karyotype	
Gene linkage	
Genetic distance	
Genotype	
Phenotype	
Wild type	
Chi-squared	
Meiosis	
Interphase	
DNA replication	
Sister chromatids	
Homologous chromosome pairs	
Spindle fibers	
Centriole	
Centrosome	
Centromere	
Kinetochore	
Diploid	
Haploid	

Crossing over				
Independent assortment				
Materials/Resources/Tech	nology:			
Microscopes Boundless online textboo	k			
ESSENTIAL Standards	Learning Targets			
1.B: Explain biological concepts and/or	Demonstrate proficiency through completion of the following assignments:			
processes.	Gene Linkage simulation/distance calculations			
	Virtual Drosophila genetics lab			
	Quiz - Heredity			
	Test Five			
2.A: Describe characteristics of a	Gene Linkage simulation/distance calculations			
biological concept,	Virtual <i>Drosophila</i> genetics lab			
process, or model represented visually.	Test Five			
5.A: Perform mathematical equations.	Gene Linkage simulation/distance calculations			
	Mendelian genetics problems			
	Quiz - Heredity			

Test Five
Gene Linkage simulation/distance calculations Mendelian genetics problems Chi-squared sample problems Quiz - Heredity Test Five
Gene Linkage simulation/distance calculations Virtual <i>Drosophila</i> genetics lab Test Five
Learning Targets
Proficiency as demonstrated with the relevant assignment(s)

• N/A - currently only one section/one teacher

Unit 6: Gene Expression and Regulation

Duration of Unit: 4 weeks

Description of Unit:

We have learned about the regulation of gene expression, allowing us to predict and even control when genes are turned on or off. Active genes will produce their proteins, whereas inactive genes will not. This can have major effects on the observed phenotype.

Hands-on technological applications also allow us to manipulate DNA, RNA, and proteins in order to investigate their properties, create more copies for our use, or even use nucleic acids to affect our natural world.

Essential Questions and/or Enduring Understandings:

Draw and label the structure of the DNA molecule.

Explain how the DNA structure allows it to store information.

Briefly describe the connection between DNA, RNA, and protein.

How are genes regulated? What would activate a gene vs. turning it off?

How can we use biotechnology to manipulate or analyze molecules?

Academic Vocabulary:

Nucleotide			
Codon			
Complementary bases			
Transcription			
Translation			
DNA replication			
Helicase			
RNA polymerase			
Promoter sequence			
TATA box			
mRNA			
tRNA			
Amino acids			
Polypeptides			
Proteins			
Nucleosomes			
Histones			
Phosphorylation			
Kinase			
Methylation			
Methyltransferase			
Operon			
Materials/Resources/Technology:			
Gel electrophoresis apparatus Visualization technology (UV detection))		

ESSENTIAL Standards	Learning Targets
1.A: Describe biological	Demonstrate proficiency through completion of the following assignments
concepts and/or processes.	Boundless Ch. 14 - reading guide
	Stickleback gene modeling
	Test Six
1.B: Explain biological	Stickleback gene modeling
concepts and/or processes.	Test Six
3.A: Identify or pose a	Inquiry lab extension (student choice)
testable question based on an observation, data, or a model.	Test Six
6.C: Provide reasoning to	Boundless Ch. 14 - reading guide
justify a claim by connecting evidence to biological	
theories.	Test Six
6.E: Predict the causes or	Stickleback gene modeling
effects of a change in, or disruption to, one or more	Test Six
components in a biological system	

NICE TO KNOW Standards	Learning Targets
Other AP Biology " <u>Skills</u> <u>and Standards</u> "	Proficiency as demonstrated with the relevant assignment(s)
	Common Formative and Summative Assessments
N/A - currently onl	ly one section/one teacher

Unit 7: Evolution

Duration of Unit: 4 weeks

Description of Unit: The basic principles of survival and natural selection have driven the change in populations that has led to the variety we see today. This unit will explore the evidence, mechanisms, and outcomes of evolutionary change.

Essential Questions and/or Enduring Understandings:

What evidence is there that all living things are related?

What is the "Most Recent Common Ancestor"?

Describe natural selection, and give an example of how it can cause change in a population.

How are other causes of evolution similar to and different from natural selection? (genetic drift, artificial selection)

Compare sympatric and allopatric speciation.

How do ring species demonstrate evolutionary change?

How does extinction relate to evolutionary processes?

What are some common misconceptions around evolution? How would you address these areas of misunderstanding?

Academic Vocabulary:

Evolution Natural selection Artificial selection Sexual selection Genetic drift Founder effect Bottleneck effect Most recent common ancestor Phylogenetic tree Cladogram Node Taxon Clade Monophyletic group Paraphyletic group Polyphyletic group Synapomorphy

Plesiomorphy

Primitive characters

Derived characters

Sympatric sp Allopatric sp				
Ring species				
Homologous				
Analogous cl Convergent (
Divergent ev	olution			

ESSENTIAL Standards	Learning Targets
1.C: Explain biological concepts, processes, and/or models in applied contexts.	Demonstrate proficiency through completion of the following assignments: Natural selection - description paragraphs Test Seven
2 A. Describe share staristics	
2.A: Describe characteristics of a biological concept, process, or model	Selection "types" and graphs
represented visually.	Test Seven
2.B: Explain relationships	Selection "types" and graphs
between different characteristics of biological	Test Seven

Other AP Biology " <u>Skills</u> <u>and Standards</u> "	Proficiency as demonstrated with the relevant assignment(s)
NICE TO KNOW Standards	Learning Targets
6.E: Predict the causes or effects of a change in, or disruption to, one or more components in a biological system.	Evolutionary "Crystal Ball" predictions Test Seven
5.A: Perform mathematical calculations.	Hardy-Weinberg simulation/lab Test Seven
4.B: Describe data from a table or graph.	Hardy-Weinberg simulation/lab Test Seven
2.D: Represent relationships within biological models.	Hardy-Weinberg simulation/lab Evolutionary "Crystal Ball" predictions Test Seven
concepts, processes, or models.	

• N/A - currently only one section/one teacher

Unit 8: Ecology

Duration of Unit: 3 weeks

Description of Unit:

Ecology focuses on studying the interconnected webs of relationships all organisms need in order to survive. A change in any one population can have far-reaching effects throughout the ecosystem. Competition to obtain resources leads to a wide variety of ways of life, from photosynthetic bacteria to the blue whale.

Although humans are not exempt from these relationships, we do have a disproportionate effect on the natural environment. The last section of this unit will explore some of those effects, both positive and negative.

Essential Questions and/or Enduring Understandings:

How does Lindeman's Rule control trophic level numbers?

Draw a basic diagram, including the sun, showing energy transfer through a community. Be sure to indicate relative energy availability at each trophic level.

How does competition for resources lead to niche development?

Give an evolutionary explanation for mutualism.

Use evidence to form an argument for or against this statement: "Humans have had a negative effect on the natural environment."

What realistic steps could be taken in the future to minimize or reverse negative human effects on the planet?

Academic Vocabulary:				
Competition				
Predation				
Symbiosis				
Mutualism				
Commensalism				
Parasitism				
Niche				
Competitive exclusion				
Keystone species				
Population				
Community				
Ecosystem				
Biodiversity				
Succession				
Frophic level				
Producer	roducer			
Primary consumer	Primary consumer			
Secondary consumer				
Tertiary consumer	Tertiary consumer			
Lindeman's Rule	-indeman's Rule			
Efficiency				
Gross primary productivity				
Net primary productivity				
Biomass				
Materials/Resources/Tech	Materials/Resources/Technology:			
	Microscopes Random population sampling tools			
Data collection equipment Boundless online textboo				
ESSENTIAL Standards	Learning Targets			

1.C: Explain biological	Demonstrate proficiency through completion of the following assignments:
concepts, processes, and/or models in applied contexts.	Quiz - Ecology
	Human Impact Research Paper
2.D: Represent relationships within biological models, including mathematical models, diagrams, or flow charts.	Energy Pyramids
4.B: Describe data from a table or graph.	Quiz - Ecology Human Impact Research Paper
6.D: Explain the relationship between experimental results and larger biological concepts, processes, or theories.	Quiz - Ecology Human Impact Research Paper
6.E: Predict the causes or effects of a change in, or disruption to, one or more components in a biological system.	Quiz - Ecology Human Impact Research Paper
NICE TO KNOW Standards	Learning Targets

Other AP Biology " <u>Skills</u> and Standards"	Proficiency as demonstrated with the relevant assignment(s)
Common Formative and Summative Assessments	
N/A - currently only one section/one teacher	